2,231 research outputs found

    Barrier analysis approach in metal additive manufacturing implementation with environment consideration

    Get PDF
    Notwithstanding the developments in additive manufacturing technology have been set to overcome human limitations and improve efficiency in manual restoration activities, their widespread implementation as a disruptive production technology has brought various impacts on the environment, and the environmental assessment is limited in this regard. The Malaysian automotive industry has not seen widespread adoption of Life Cycle Assessment for additive manufacturing implementation. Based on the current literature review, there is a gap as the barriers for implementing Life Cycle Assessment in additive manufacturing technology within the Malaysian automotive manufacturing industry are not critically discussed. There is a need for developing appropriate approaches to weight and determine the interrelationships between these obstacles and the most prevalent ones in order to devise mitigation strategies for them. The purposes of this study are to identify various barriers of implementing Life Cycle Assessment in metal additive manufacturing within Malaysian automotive manufacturing industry and, secondly, to develop an approach to prioritize the barriers and recognize the most critical barriers. In this regard, the extant literature has critically reviewed the barriers of implementing Life Cycle Assessment in metal additive manufacturing within Malaysian automotive manufacturing industry. Fuzzy preference programming, as one of the newest and most accurate fuzzy modifications of the Analytical Hierarchy Process, was used to achieve the research purposes. Suitable Triangular Fuzzy Number has been defined and the selected data collection method was expert opinion. A total of eight industry experts from one company were involved in this research study to give their opinion on the Fuzzy Analytical Hierarchy Process pairwise comparison table. The expert opinions indicated that the main concern of industry is financial-related topic. The data collected have been analyzed using Fuzzy Analytical Hierarchy Process calculations and confirmed by the consistency check. Following the results, dominant barriers were accordingly identified and ranked in each category as well as overall. According to the results from expert opinions, the highest-ranking barrier is lack of financial resources, followed by lack of Life Cycle Assessment expertise in the additive manufacturing context, and the third rank is the lack of laws and directives for Life Cycle Assessment application in additive manufacturing. The findings may be useful to managers to develop suitable mitigation strategies and make more informed decisions with individual focus, level focus, or cluster focus. It may also contribute to the additive manufacturing literature by the weighted presentation of the barriers to implementing Life Cycle Assessment in additive manufacturing within the Malaysian automotive manufacturing industry. This study will contribute to a framework of roadmaps and strategies for sound and environmentally friendly additive manufacturing implementation in Malaysian automotive industry

    Sustainability-oriented application of value stream mapping: a review and classification

    Get PDF
    Notwithstanding the research on refining lean tools for the sake of sustainable development is slowly progressing, sustainability-oriented application of value stream mapping has received undivided attention from practitioners and researchers. Going through the literature highlights that there is a lack of research in integrating and systematizing the available knowledge on this lean tool, which is regarded as a visual process-based method to make sustainable progress over the time-based and green concepts of wastes to also assess and improve the societal sustainability performance of organizations. Hence, this paper has been aimed at presenting the findings of a systematic literature review on value stream mapping from the triple bottom line point of view. It classifies and codes the main studies in the context as well as provides a research agenda with nine recommendations that may advance this under-studied field. To narrow the gap in the current literature, this article also proposes a sustainability indicator set that would considerably contribute to guiding and strengthening the state-of-the-art research on successful implementation of the application. Besides, the findings indicate that more investigations are needed on employing survey and conceptual methodologies, applying comparative and cross-industry perspectives, developing sustainability indicator sets particularly societal metrics, and considering the stakeholders' benefits from adopting sustainability-oriented value stream mapping. The research on the convergence of this sustainability-oriented application and new paradigms such as IR 4.0 and/or Circular Economy should be also strengthened

    Non-collinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7

    Get PDF
    The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced magnetization plateaus and ferroelectricity, but its magnetic ground state remains ambiguous due to its structural complexity. Magnetometry measurements, and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which consists of two non-equivalent Co sites. Upon cooling below the Ne\'el temperature TN = 6.3 K, we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of long range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated non-collinear magnetic ground state with Co moments mainly located in b-c plane and forming a non-collinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the non-collinear magnetic structure is more stable than various ferromagnetic states at low temperature. The non-collinear magnetic structure with canted up-up-down-down spin configuration is considered as the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins is the driving force of ferroelectricity. Besides, it is found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.Comment: 9 pages, 8 figure

    The fermi arc and fermi pocket in cuprates in a short-range diagonal stripe phase

    Full text link
    In this paper we studied the fermi arc and the fermi pocket in cuprates in a short-range diagonal stripe phase with wave vectors (7π/8,7π/8)(7\pi/8, 7\pi/8), which reproduce with a high accuracy the positions and sizes of the fermi arc and fermi pocket and the superstructure in cuprates observed by Meng et al\cite{Meng}. The low-energy spectral function indicates that the fermi pocket results from the main band and the shadow band at the fermi energy. Above the fermi energy the shadow band gradually departs away from the main band, leaving a fermi arc. Thus we conclude that the fermi arc and fermi pocket can be fully attributed to the stripe phase but has nothing to do with pairing. Incorporating a d-wave pairing potential in the stripe phase the spectral weight in the antinodal region is removed, leaving a clean fermi pocket in the nodal region.Comment: 5 pages, 6 figure

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Satisfaction of UUM students toward the car sticker application service offered by UUM-U-Assist

    Get PDF
    U-Assist Services has been one of the major topics discussed by the students in UUM. Most of its services are commendable by the students but car sticker application, has been tremendously under duress.This study aims to look into these issues by examining the satisfaction of UUM students toward the car sticker application.The respondents are UUM students who apply for the car stickers.The survey was carried out to 100 respondents using the SERVQUAL instruments. The results show that there are significant differences between all respondents with demographic differences in view of ranking, satisfaction and issues

    Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders

    Get PDF
    Abstract CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at “off-target” sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated

    FAST observations of an extremely active episode of FRB 20201124A: IV. Spin Period Search

    Full text link
    We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio telescope (FAST) during an extremely active episode on UTC September 25th-28th, 2021 in a series of four papers. In this fourth paper of the series, we present a systematic search of the spin period and linear acceleration of the source object from both 996 individual pulse peaks and the dedispersed time series. No credible spin period was found from this data set. We rule out the presence of significant periodicity in the range between 1 ms to 100 s with a pulse duty cycle <0.49±0.08< 0.49\pm0.08 (when the profile is defined by a von-Mises function, not a boxcar function) and linear acceleration up to 300300 m s2^{-2} in each of the four one-hour observing sessions, and up to 0.60.6 m s2^{-2} in all 4 days. These searches contest theoretical scenarios involving a 1 ms to 100 s isolated magnetar/pulsar with surface magnetic field <1015<10^{15} G and a small duty cycle (such as in a polar-cap emission mode) or a pulsar with a companion star or black hole up to 100 M_{\rm \odot} and Pb>10P_b>10 hours. We also perform a periodicity search of the fine structures and identify 53 unrelated millisecond-timescale "periods" in multi-components with the highest significance of 3.9 σ\sigma. The "periods" recovered from the fine structures are neither consistent nor harmonically related. Thus they are not likely to come from a spin period. We caution against claiming spin periodicity with significance below \sim 4 σ\sigma with multi-components from one-off FRBs. We discuss the implications of our results and the possible connections between FRB multi-components and pulsar micro-structures.Comment: Accepted by Research in Astronomy and Astrophysics (RAA

    Molecular Analysis of Serum and Bronchoalveolar Lavage in a Mouse Model of Influenza Reveals Markers of Disease Severity That Can Be Clinically Useful in Humans

    Get PDF
    Background: Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities. Methodology/Principal Findings: We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL) and sera from mice infected with influenza A virus (PR8 strain) using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with “peak viremia,” “inflammatory damage,” as well as the “recovery phase.” In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their “appearance” in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence. Conclusions/Significance: The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.Singapore. National Research FoundationSingapore-MIT Alliance for Research and Technology (ID-IRG research program
    corecore